Bayesian semiparametric clustering of functional predictors

نویسندگان

  • Jamie Lynn Bigelow
  • David B. Dunson
چکیده

This article proposes a new method for the joint clustering of functional predictors with some outcome of interest. A multivariate adaptive spline model is used to describe the functions, and the outcome is modeled through a generalized linear model with a random intercept. Through specifying the random intercept to follow a Dirichlet process jointly with the random spline coefficients, we obtain a procedure that clusters trajectories according to shape and according to the parameters of the outcome model for each cluster. This very flexible method allows for the incorporation of covariates in the models for both the outcome and the trajectory. We apply the method to post-ovulatory progesterone data from the Early Pregnancy Study and find that the model successfully separates clinical pregnancies from early pregnancy losses.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Density Regression and Predictor-dependent Clustering

JU-HYUN PARK: Bayesian Density Regression and Predictor-Dependent Clustering. (Under the direction of Dr. David Dunson.) Mixture models are widely used in many application areas, with finite mixtures of Gaussian distributions applied routinely in clustering and density estimation. With the increasing need for a flexible model for predictor-dependent clustering and conditional density estimation...

متن کامل

Bayesian Generalized Product Partition Model

Starting with a carefully formulated Dirichlet process (DP) mixture model, we derive a generalized product partition model (GPPM) in which the partition process is predictor-dependent. The GPPM generalizes DP clustering to relax the exchangeability assumption through the incorporation of predictors, resulting in a generalized Pólya urn scheme. In addition, the GPPM can be used for formulating f...

متن کامل

Bayesian Geoadditive Seemingly Unrelated Regression

Parametric seemingly unrelated regression (SUR) models are a common tool for multivariate regression analysis when error variables are reasonably correlated, so that separate univariate analysis may result in inefficient estimates of covariate effects. A weakness of parametric models is that they require strong assumptions on the functional form of possibly nonlinear effects of metrical covaria...

متن کامل

Bayesian Analysis of Varying Coefficient Models and Applications

ZHAOWEI HUA: Bayesian Analysis of Varying Coefficient Models and Applications. (Under the direction of Hongtu Zhu and David B. Dunson.) The varying coefficient models have been very important analytic tools to study the dynamic pattern in biomedicine fields. Since nonparametric varying coefficient models make few assumptions on the specification of the model, the ‘curse of dimensionality’ is an...

متن کامل

Bayesian Geoadditive Seemingly Unrelated Regression 1

Parametric seemingly unrelated regression (SUR) models are a common tool for multivariate regression analysis when error variables are reasonably correlated, so that separate univariate analysis may result in inefficient estimates of covariate effects. A weakness of parametric models is that they require strong assumptions on the functional form of possibly nonlinear effects of metrical covaria...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006